A newly formed public-private consortium called GLASE—The Greenhouse Lighting and Systems Engineering Consortium, led by researchers at Cornell University and Rensselaer—is being launched to transform the way greenhouses operate in order to reduce electricity use by 70 percent. The announcement was made during a press conference held at Rensselaer June 5.

Today, as consumers demand more locally sourced vegetables and the farm-to-table trend builds momentum, New York greenhouses are faced with conflicting tasks focused on producing more quality vegetables while reducing overall energy consumption. Now, a newly formed public-private consortium called GLASE—The Greenhouse Lighting and Systems Engineering Consortium, led by researchers at Cornell University and Rensselaer—is being launched to transform the way greenhouses operate in order to reduce electricity use by 70 percent.

The seven-year, $5 million project funded by the New York State Energy Research and Development Authority (NYSERDA) will advance Governor Andrew M. Cuomo’s Clean Energy Standard that aims to have 50 percent of electricity come from renewable energy sources by 2030.

Plant physiology expert Tessa Pocock, who serves as a senior research scientist at the Center for Lighting Enabled Systems & Applications (LESA), will lead the work at Rensselaer. Pocock is fascinated by photosynthesis and has conducted research with plants in both academic and industry settings. “The engineered LED lighting and sensing systems with advanced feedback control are being pioneered at LESA. Integrated with Cornell’s advanced greenhouse management technologies, GLASE has the potential to create a more sustainable and profitable greenhouse industry. The systems engineering expertise at LESA and the agriculture expertise at Cornell make this an ideal partnership.”

Neil Mattson, the lead investigator of GLASE at Cornell and associate professor in the Horticulture Section of the School of Integrative Plant Science, will partner with Pocock to demonstrate a holistic greenhouse energy management system that integrates control of LED lighting, carbon dioxide supplementation, ventilation, and humidity. “This investment in energy-efficient greenhouse production will help ensure New York’s continued leadership in local food production in the Northeast,” said Mattson. “Increasing the amount of food grown indoors creates opportunities for agriculture in places where it was never possible before.”

Mattson, who directs the Controlled Environment Agriculture group in the College of Agriculture and Life Sciences, said reactive lighting made possible with LED technologies allows growers to provide optimal lighting even as conditions change throughout the day. His research at the Kenneth Post and Guterman greenhouse facilities on Cornell’s campus will determine precise LED light conditions needed by tomatoes and lettuce as model plants. Mattson and his team also will study how tomato and strawberry growth responds to carbon dioxide supplementation.

Greenhouses, which currently cover 720 acres in New York state, extend the growing season and protect crops and other plants from harsh weather conditions. Recent U.S. Department of Agriculture census data shows the cultivation of lettuce and tomatoes, two profitable crops well-suited for greenhouse production, increased in New York by 10.6 percent per year from 2007 to 2012. Since 2012, rapid growth in greenhouse production continues.

“New York state’s greenhouse industry is experiencing rapid growth, making quick and meaningful action key to ensuring new and existing greenhouses are energy-efficient and highly productive,” said John B. Rhodes, president and CEO, NYSERDA. “The consortium’s work will advance Governor Cuomo’s energy goals and New York’s vital agriculture sector.”

Already, more than 30 potential participants have expressed interest in joining the consortium, including growers, lighting and fixture manufacturers, trade groups, supermarket produce buyers, horticultural suppliers, and research organizations. The consortium is structured so it will become self-sustaining within seven years.